LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanics of removing water from the ear canal: Rayleigh–Taylor instability

Photo from wikipedia

Abstract Water stuck in the ear is a common problem during showering, swimming or other water activities. Having water trapped in the ear canal for a long time can lead… Click to show full abstract

Abstract Water stuck in the ear is a common problem during showering, swimming or other water activities. Having water trapped in the ear canal for a long time can lead to ear infections and possibly result in hearing loss. A common strategy for emptying water from the ear canal is to shake the head, where high acceleration helps remove the water. In this present study, we rationalize the underlying mechanism of water ejection/removal from the ear canal by performing experiments and developing a stability theory. From the experiments, we measure the critical acceleration to remove the trapped water inside different sizes of canals. Our theoretical model, modified from the Rayleigh–Taylor instability, can explain the critical acceleration observed in experiments, which strongly depends on the radius of the ear canal. The resulting critical acceleration tends to increase, especially in smaller ear canals, which indicates that shaking heads for water removal can be more laborious and potentially threatening to children due to their small size of the ear canal compared with adults.

Keywords: taylor instability; water; rayleigh taylor; ear canal; water ear; mechanics

Journal Title: Journal of Fluid Mechanics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.