LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Parameterization of turbulence modulation by finite-size solid particles in forced homogeneous isotropic turbulence

Photo by charlesdeluvio from unsplash

Abstract Turbulence modulation by finite-size particles in homogeneous isotropic turbulence (HIT) has been investigated numerically and experimentally in many studies, but its controlling parameters are not fully clear. In this… Click to show full abstract

Abstract Turbulence modulation by finite-size particles in homogeneous isotropic turbulence (HIT) has been investigated numerically and experimentally in many studies, but its controlling parameters are not fully clear. In this work, four non-dimensional parameters governing the turbulent modulation by non-settling particles, i.e. $Re_\lambda$ of the background HIT, the particle-to-fluid density ratio $\rho _p/\rho _f$, the relative particle size $d_p/\eta$ and the particle volume fraction $\phi _v$, are identified through dimensional analysis. Then, a parameterization study is conducted based on results from fully resolved direct numerical simulations to investigate the influence of the above non-dimensional parameters on the modulation of turbulent kinetic energy (TKE) and viscous dissipation rate. Empirical models that quantitatively predict the modulation of TKE and dissipation rate are then developed by fitting in the simulation results. These models are used to examine the turbulence modulation results reported in the literature. The model predictions and the data points of TKE modulation show reasonable agreement, but the model predicting the modulation of dissipation rate needs further deliberation as the credibility of the available data points is currently difficult to assess. The generality and the physics behind these empirical models also require further investigation.

Keywords: modulation; finite size; turbulence; turbulence modulation; modulation finite

Journal Title: Journal of Fluid Mechanics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.