LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of compressible turbulent plane Couette flows via direct numerical simulation

Photo by madhatterzone from unsplash

Abstract Compressible turbulent plane Couette flows are studied via direct numerical simulation for wall Reynolds numbers up to $Re_w=10\ 000$ and wall Mach numbers up to $M_w=5$. Various turbulence statistics… Click to show full abstract

Abstract Compressible turbulent plane Couette flows are studied via direct numerical simulation for wall Reynolds numbers up to $Re_w=10\ 000$ and wall Mach numbers up to $M_w=5$. Various turbulence statistics are compared with their incompressible counterparts at comparable semilocal Reynolds numbers $Re^*_{\tau,c}$. The skin friction coefficient $C_f$, which decreases with $Re_w$, only weakly depends on $M_w$. On the other hand, the thermodynamic properties (mean temperature, density and others) strongly vary with $M_w$. Under proper scaling transformations, the mean velocity profiles for the compressible and incompressible cases collapse well and show a logarithmic region with the Kárman constant $\kappa =0.41$. Compared with wall units, the semilocal units yield a better collapse for the profiles of the Reynolds stresses. While the wall-normal and spanwise Reynolds stress components slightly decrease in the near-wall region, the inner peak of the streamwise component notably increases with increasing $M_w$ – indicating that flow becomes more anisotropic when compressible. In addition, the near-wall turbulence production decreases as $M_w$ increases – due to rapid wall-normal changes of viscosity caused by viscous heating. The streamwise and spanwise energy spectra show that the length scale of near-wall coherent structures does not vary with $M_w$ in semilocal units. Consistent with those in incompressible flows, the superstructures (the large-scale streamwise rollers) with a typical spanwise scale of $\lambda _z/h\approx 1.5{\rm \pi}$ become stronger with increasing $Re_w$. For the highest $Re_w$ studied, they contribute about $40\,\%$ of the Reynolds shear stress at the channel centre. Interestingly, flow visualization and correlation analysis show that the streamwise coherence of these structures degrades with increasing $M_w$. In addition, at comparable $Re^*_{\tau,c}$, the amplitude modulation of these structures on the near-wall small scales is quite similar between incompressible and compressible cases – but much stronger than that in plane Poiseuille flows.

Keywords: couette flows; wall; plane couette; turbulent plane; plane; compressible turbulent

Journal Title: Journal of Fluid Mechanics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.