LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental investigation of turbulent counter-rotating Taylor–Couette flows for radius ratio η = 0.1

Photo by heftiba from unsplash

Abstract Turbulent Taylor–Couette flow between two concentric independently rotating cylinders with a radius ratio of $\eta = 0.1$ is studied experimentally. While the scope is to study the counter-rotating cases… Click to show full abstract

Abstract Turbulent Taylor–Couette flow between two concentric independently rotating cylinders with a radius ratio of $\eta = 0.1$ is studied experimentally. While the scope is to study the counter-rotating cases between both cylinders, the radial and azimuthal velocity components are recorded at different horizontal planes with high-speed particle image velocimetry. The parametric study considered a set of different shear Reynolds numbers in the range of $20\,000 \leq Re_s \leq 1.31 \times 10^5$, with different rotation ratios of $-0.06 \leq \mu \leq +0.008$. The observed flow fields had a clear dependence on the rotation ratio, where flow patterns evolved with a more pronounced axial dependence. The angular momentum transport is computed as a result of the recorded flow fields and given by a quasi-Nusselt number. The dependence of the Nusselt number on the different rotation ratios shows a maximum for the low counter-rotating case and $\mu _{max}$ is found between $-0.011 < \mu _{max} < -0.0077$. The Nusselt number decreases for stronger counter-rotation until a minimum is reached, where it tends to increase again for higher counter-rotation rates. The space–time behaviour of the turbulent flow showed the existence of patterns propagating from the inner region towards the outer region for all studied counter-rotating cases. In addition, patterns have been found that tend to propagate from the outer region towards the inner region with a novel character at high counter-rotation cases. These patterns enhance the angular momentum transport where a second maximum in the transport mechanism has to be expected.

Keywords: counter rotating; rotation; taylor couette; radius ratio; counter

Journal Title: Journal of Fluid Mechanics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.