LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patterns in glacial-earthquake activity around Greenland, 2011–13

Photo from wikipedia

ABSTRACT Glacial earthquakes are caused by large iceberg calving events, which are an important mechanism for mass loss from the Greenland ice sheet. The number of glacial earthquakes in Greenland… Click to show full abstract

ABSTRACT Glacial earthquakes are caused by large iceberg calving events, which are an important mechanism for mass loss from the Greenland ice sheet. The number of glacial earthquakes in Greenland has increased sixfold over the past two decades. We use teleseismic surface waves to analyze the 145 glacial earthquakes that occurred in Greenland from 2011 through 2013, and successfully determine source parameters for 139 events at 13 marine-terminating glaciers. Our analysis increases the number of events in the glacial-earthquake catalog by nearly 50% and extends it to 21 years. The period 2011–13 was the most prolific 3-year period of glacial earthquakes on record, with most of the increase over earlier years occurring at glaciers on Greenland's west coast. We investigate changes in earthquake productivity and geometry at several individual glaciers and link patterns in glacial-earthquake production and cessation to the absence or presence of a floating ice tongue. We attribute changes in earthquake force orientations to changes in calving-front geometry, some of which occur on timescales of days to months. Our results illustrate the utility of glacial earthquakes as a remote-sensing tool to identify the type of calving event, the grounded state of a glacier, and the orientation of an active calving front.

Keywords: glacial earthquakes; glacial earthquake; geometry; greenland 2011; earthquake

Journal Title: Journal of Glaciology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.