LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stein's method for negatively associated random variables with applications to second-order stationary random fields

Photo by efekurnaz from unsplash

Abstract Let ξ = (ξ1, . . ., ξm) be a negatively associated mean-zero random vector with components that obey the bound |ξi| ≤ B, i = 1, . .… Click to show full abstract

Abstract Let ξ = (ξ1, . . ., ξm) be a negatively associated mean-zero random vector with components that obey the bound |ξi| ≤ B, i = 1, . . ., m, and whose sum W = ∑i=1mξi has variance 1. The bound d1(ℒ(W), ℒ(Z)) ≤ 5B - 5.2∑i≠ jσij is obtained, where Z has the standard normal distribution and d1(∙, ∙) is the L1 metric. The result is extended to the multidimensional case with the L1 metric replaced by a smooth functions metric. Applications to second-order stationary random fields with exponential decreasing covariance are also presented.

Keywords: applications second; second order; random; order stationary; negatively associated; stationary random

Journal Title: Journal of Applied Probability
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.