LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple drawing multi-colour urns by stochastic approximation

Photo by ninjason from unsplash

Abstract A classical Pólya urn scheme is a Markov process where the evolution is encoded by a replacement matrix (Ri, j)1 ≤ i, j ≤ d. At every discrete time-step,… Click to show full abstract

Abstract A classical Pólya urn scheme is a Markov process where the evolution is encoded by a replacement matrix (Ri, j)1 ≤ i, j ≤ d. At every discrete time-step, we draw a ball uniformly at random, denote its colour c, and replace it in the urn together with Rc, j balls of colour j (for all 1 ≤ j ≤ d). We study multiple drawing Pólya urns, where the replacement rule depends on the random drawing of a set of m balls from the urn (with or without replacement). Many particular examples of this situation have been studied in the literature, but the only general results are due to Kuba and Mahmoud (2017). These authors proved second-order asymptotic results in the two-colour case, under the so-called balance and affinity assumptions, the latter being somewhat artificial. The main idea of this work is to apply stochastic approximation methods to this problem, which enables us to prove analogous results to Kuba and Mahmoud, but without the artificial affinity hypothesis, and, for the first time in the literature, in the d-colour case (d ≥ 3). We also provide some partial results in the two-colour nonbalanced case, the novelty here being that the only results for this case currently in the literature are for particular examples.

Keywords: multiple drawing; stochastic approximation; colour; case; drawing multi

Journal Title: Journal of Applied Probability
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.