LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TEST VECTORS FOR LOCAL CUSPIDAL RANKIN–SELBERG INTEGRALS

Photo by kew92 from unsplash

Let $\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2}$ be a pair of cuspidal complex, or $\ell$ -adic, representations of the general linear group of rank $n$ over a nonarchimedean local field $F$ of residual characteristic $p$… Click to show full abstract

Let $\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2}$ be a pair of cuspidal complex, or $\ell$ -adic, representations of the general linear group of rank $n$ over a nonarchimedean local field $F$ of residual characteristic $p$ , different to $\ell$ . Whenever the local Rankin–Selberg $L$ -factor $L(X,\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2})$ is nontrivial, we exhibit explicit test vectors in the Whittaker models of $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ such that the local Rankin–Selberg integral associated to these vectors and to the characteristic function of $\mathfrak{o}_{F}^{n}$ is equal to $L(X,\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2})$ . As an application we prove that the $L$ -factor of a pair of banal $\ell$ -modular cuspidal representations is the reduction modulo $\ell$ of the $L$ -factor of any pair of $\ell$ -adic lifts.

Keywords: cuspidal; unicode stix; rankin selberg; stix x1d70b

Journal Title: Nagoya Mathematical Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.