LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Forming Companions on the Spectral Energy Distributions of Stars with Circumstellar Discs

Photo from wikipedia

Abstract We study a possibility to detect signatures of brown dwarf companions in a circumstellar disc based on spectral energy distributions. We present the results of spectral energy distribution simulations… Click to show full abstract

Abstract We study a possibility to detect signatures of brown dwarf companions in a circumstellar disc based on spectral energy distributions. We present the results of spectral energy distribution simulations for a system with a 0.8 M⊙ central object and a companion with a mass of 30 M J embedded in a typical protoplanetary disc. We use a solution to the one-dimensional radiative transfer equation to calculate the protoplanetary disc flux density and assume, that the companion moves along a circular orbit and clears a gap. The width of the gap is assumed to be the diameter of the brown dwarf Hill sphere. Our modelling shows that the presence of such a gap can initiate an additional minimum in the spectral energy distribution profile of a protoplanetary disc at λ = 10–100 μm. We found that it is possible to detect signatures of the companion when it is located within 10 AU, even when it is as small as 3 M J. The spectral energy distribution of a protostellar disc with a massive fragment (of relatively cold temperature ~400 K) might have a similar double peaked profile to the spectral energy distribution of a more evolved disc that contains a gap.

Keywords: energy distribution; energy; energy distributions; spectral energy; disc

Journal Title: Publications of the Astronomical Society of Australia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.