LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of lithology and climate on bedrock river incision and terrace development along the Buffalo National River, Arkansas

Photo from wikipedia

The Buffalo National River in northwest Arkansas preserves an extensive Quaternary record of fluvial bedrock incision and aggradation across lithologies of variable resistance. In this work, we apply optically stimulated… Click to show full abstract

The Buffalo National River in northwest Arkansas preserves an extensive Quaternary record of fluvial bedrock incision and aggradation across lithologies of variable resistance. In this work, we apply optically stimulated luminescence (OSL) dating to strath and fill terraces along the Buffalo River to elucidate the role of lithology and climate on the development of the two youngest terrace units (Qtm and Qty). Our OSL ages suggest a minimum strath planation age of ca. 250 ka for the Qtm terraces followed by a ca. 200 ka record of aggradation. Qtm incision likely occurred near the last glacial maximum (LGM), prior to the onset of Qty fill terrace aggradation ca. 14 ka. Our terrace ages are broadly consistent with other regional terrace records, and comparison with available paleoclimatic archives suggests that terrace aggradation and incision occurred during drier and wetter hydrological conditions, respectively. Vertical bedrock incision rates were also calculated using OSL-derived estimates of Qtm strath planation and displayed statistically significant spatial variability with bedrock lithology, ranging from ~35 mm/ka in the higher resistance reaches and ~16 mm/ka in the lower resistance reaches. In combination with observations of valley width and terrace distribution, these results suggest that vertical processes outpace lateral ones in lithologic reaches with higher resistance.

Keywords: incision; river; bedrock; buffalo national; lithology; terrace

Journal Title: Quaternary Research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.