LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A REMARK ON THE TRACIAL ROKHLIN PROPERTY

Photo by etienne_beauregard from unsplash

To explore the difficulties of classifying actions with the tracial Rokhlin property using K-theoretic data, we construct two $\mathbb{Z}_{2}$ actions $\unicode[STIX]{x1D6FC}_{1},\unicode[STIX]{x1D6FC}_{2}$ on a simple unital AF algebra $A$ such that… Click to show full abstract

To explore the difficulties of classifying actions with the tracial Rokhlin property using K-theoretic data, we construct two $\mathbb{Z}_{2}$ actions $\unicode[STIX]{x1D6FC}_{1},\unicode[STIX]{x1D6FC}_{2}$ on a simple unital AF algebra $A$ such that $\unicode[STIX]{x1D6FC}_{1}$ has the tracial Rokhlin property and $\unicode[STIX]{x1D6FC}_{2}$ does not, while $(\unicode[STIX]{x1D6FC}_{1})_{\ast }=(\unicode[STIX]{x1D6FC}_{2})_{\ast }$ , where $(\unicode[STIX]{x1D6FC}_{i})_{\ast }$ is the induced map by $\unicode[STIX]{x1D6FC}_{i}$ acting on $K_{0}(A)$ for $i=1,2$ .

Keywords: unicode stix; rokhlin property; stix x1d6fc; tracial rokhlin

Journal Title: Bulletin of the Australian Mathematical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.