LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

QUADRATIC NONRESIDUES AND NONPRIMITIVE ROOTS SATISFYING A COPRIMALITY CONDITION

Photo by jeremybishop from unsplash

Let $q\geq 1$ be any integer and let $\unicode[STIX]{x1D716}\in [\frac{1}{11},\frac{1}{2})$ be a given real number. We prove that for all primes $p$ satisfying $$\begin{eqnarray}p\equiv 1\!\!\!\!\hspace{0.6em}({\rm mod}\hspace{0.2em}q),\quad \log \log p>\frac{2\log 6.83}{1-2\unicode[STIX]{x1D716}}\quad… Click to show full abstract

Let $q\geq 1$ be any integer and let $\unicode[STIX]{x1D716}\in [\frac{1}{11},\frac{1}{2})$ be a given real number. We prove that for all primes $p$ satisfying $$\begin{eqnarray}p\equiv 1\!\!\!\!\hspace{0.6em}({\rm mod}\hspace{0.2em}q),\quad \log \log p>\frac{2\log 6.83}{1-2\unicode[STIX]{x1D716}}\quad \text{and}\quad \frac{\unicode[STIX]{x1D719}(p-1)}{p-1}\leq \frac{1}{2}-\unicode[STIX]{x1D716},\end{eqnarray}$$ there exists a quadratic nonresidue $g$ which is not a primitive root modulo $p$ such that $\text{gcd}(g,(p-1)/q)=1$ .

Keywords: nonprimitive roots; stix x1d716; frac; nonresidues nonprimitive; unicode stix; quadratic nonresidues

Journal Title: Bulletin of the Australian Mathematical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.