We give a partial answer to a question attributed to Chris Miller on algebraic values of certain transcendental functions of order less than one. We obtain $C(\log H)^{\unicode[STIX]{x1D702}}$ bounds for… Click to show full abstract
We give a partial answer to a question attributed to Chris Miller on algebraic values of certain transcendental functions of order less than one. We obtain $C(\log H)^{\unicode[STIX]{x1D702}}$ bounds for the number of algebraic points of height at most $H$ on certain subsets of the graphs of such functions. The constant $C$ and exponent $\unicode[STIX]{x1D702}$ depend on data associated with the functions and can be effectively computed from them.
               
Click one of the above tabs to view related content.