Abstract For a given set $S\subseteq \mathbb {Z}_m$ and $\overline {n}\in \mathbb {Z}_m$ , let $R_S(\overline {n})$ denote the number of solutions of the equation $\overline {n}=\overline {s}+\overline {s'}$ with… Click to show full abstract
Abstract For a given set $S\subseteq \mathbb {Z}_m$ and $\overline {n}\in \mathbb {Z}_m$ , let $R_S(\overline {n})$ denote the number of solutions of the equation $\overline {n}=\overline {s}+\overline {s'}$ with ordered pairs $(\overline {s},\overline {s'})\in S^2$ . We determine the structure of $A,B\subseteq \mathbb {Z}_m$ with $|(A\cup B)\setminus (A\cap B)|=m-2$ such that $R_{A}(\overline {n})=R_{B}(\overline {n})$ for all $\overline {n}\in \mathbb {Z}_m$ , where m is an even integer.
               
Click one of the above tabs to view related content.