LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

JARNÍK TYPE THEOREMS ON MANIFOLDS

Photo by ldxcreative from unsplash

Let $\psi $ be a decreasing function. We prove zero-infinity Hausdorff measure criteria for the set of dual $\psi $ -approximable points and for the set of inhomogeneous multiplicative $\psi… Click to show full abstract

Let $\psi $ be a decreasing function. We prove zero-infinity Hausdorff measure criteria for the set of dual $\psi $ -approximable points and for the set of inhomogeneous multiplicative $\psi $ -approximable points on nondegenerate planar curves. Our results extend theorems of Huang [‘Hausdorff theory of dual approximation on planar curves’, J. reine angew. Math.740 (2018), 63–76] and Beresnevich and Velani [‘A note on three problems in metric Diophantine approximation’, in: Recent Trends in Ergodic Theory and Dynamical Systems, Contemporary Mathematics, 631 (American Mathematical Society, Providence, RI, 2015), 211–229] from s-Hausdorff measure, where $s\in \mathbb R$ , to the more general g-Hausdorff measure, where g is a suitable class of dimension functions.

Keywords: hausdorff measure; jarn type; type theorems; theorems manifolds

Journal Title: Bulletin of the Australian Mathematical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.