LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ON THE ITERATES OF THE SHIFTED EULER’S FUNCTION

Photo from wikipedia

Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$ . We show that for every initial value $x_1\ge 1$ , the sequence of positive integers $(x_n)_{n\ge 1}$… Click to show full abstract

Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$ . We show that for every initial value $x_1\ge 1$ , the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+1}=\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic. Similarly, for all initial values $x_1,x_2\ge 1$ , the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+2}=\varphi (x_{n+1})+\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic, provided that k is even.

Keywords: jats inline; jats tex; tex math; inline formula; alternatives jats; jats alternatives

Journal Title: Bulletin of the Australian Mathematical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.