LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
ON THE ITERATES OF THE SHIFTED EULER’S FUNCTION
Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$ . We show that for every initial value $x_1\ge 1$ , the sequence of positive integers $(x_n)_{n\ge 1}$… Click to show full abstract
Let
$\varphi $
be Euler’s function and fix an integer
$k\ge 0$
. We show that for every initial value
$x_1\ge 1$
, the sequence of positive integers
$(x_n)_{n\ge 1}$
defined by
$x_{n+1}=\varphi (x_n)+k$
for all
$n\ge 1$
is eventually periodic. Similarly, for all initial values
$x_1,x_2\ge 1$
, the sequence of positive integers
$(x_n)_{n\ge 1}$
defined by
$x_{n+2}=\varphi (x_{n+1})+\varphi (x_n)+k$
for all
$n\ge 1$
is eventually periodic, provided that k is even.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 1
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.