LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Point Value Maximization Problem for Positive Definite Functions Supported in a Given Subset of a Locally Compact Group

Photo from wikipedia

Abstract The century-old extremal problem, solved by Carathéodory and Fejér, concerns a non-negative trigonometric polynomial $T(t) = a_0 + \sum\nolimits_{k = 1}^n {a_k} \cos (2\pi kt) + b_k\sin (2\pi kt){\ge}0$… Click to show full abstract

Abstract The century-old extremal problem, solved by Carathéodory and Fejér, concerns a non-negative trigonometric polynomial $T(t) = a_0 + \sum\nolimits_{k = 1}^n {a_k} \cos (2\pi kt) + b_k\sin (2\pi kt){\ge}0$ , normalized by a 0=1, where the quantity to be maximized is the coefficient a 1 of cos (2π t). Carathéodory and Fejér found that for any given degree n, the maximum is 2 cos(π/n+2). In the complex exponential form, the coefficient sequence (c k ) ⊂ ℂ will be supported in [−n, n] and normalized by c 0=1. Reformulating, non-negativity of T translates to positive definiteness of the sequence (c k ), and the extremal problem becomes a maximization problem for the value at 1 of a normalized positive definite function c: ℤ → ℂ, supported in [−n, n]. Boas and Kac, Arestov, Berdysheva and Berens, Kolountzakis and Révész and, recently, Krenedits and Révész investigated the problem in increasing generality, reaching analogous results for all locally compact abelian groups. We prove an extension to all the known results in not necessarily commutative locally compact groups.

Keywords: positive definite; value; locally compact; problem; maximization problem

Journal Title: Proceedings of the Edinburgh Mathematical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.