LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toeplitz operators on Bergman spaces of polygonal domains

Photo by mhue723 from unsplash

Abstract We study the boundedness of Toeplitz operators with locally integrable symbols on Bergman spaces Ap(Ω), 1 < p < ∞, where Ω ⊂ ℂ is a bounded simply connected… Click to show full abstract

Abstract We study the boundedness of Toeplitz operators with locally integrable symbols on Bergman spaces Ap(Ω), 1 < p < ∞, where Ω ⊂ ℂ is a bounded simply connected domain with polygonal boundary. We give sufficient conditions for the boundedness of generalized Toeplitz operators in terms of ‘averages’ of symbol over certain Cartesian squares. We use the Whitney decomposition of Ω in the proof. We also give examples of bounded Toeplitz operators on Ap(Ω) in the case where polygon Ω has such a large corner that the Bergman projection is unbounded.

Keywords: operators bergman; bergman spaces; toeplitz operators; spaces polygonal; polygonal domains

Journal Title: Proceedings of the Edinburgh Mathematical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.