Abstract In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact… Click to show full abstract
Abstract In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
               
Click one of the above tabs to view related content.