Abstract In this paper, we investigate free actions of some compact groups on cohomology real and complex Milnor manifolds. More precisely, we compute the mod 2 cohomology algebra of the… Click to show full abstract
Abstract In this paper, we investigate free actions of some compact groups on cohomology real and complex Milnor manifolds. More precisely, we compute the mod 2 cohomology algebra of the orbit space of an arbitrary free ℤ2 and $\mathbb{S}^1$-action on a compact Hausdorff space with mod 2 cohomology algebra of a real or a complex Milnor manifold. As applications, we deduce some Borsuk–Ulam type results for equivariant maps between spheres and these spaces. For the complex case, we obtain a lower bound on the Schwarz genus, which further establishes the existence of coincidence points for maps to the Euclidean plane.
               
Click one of the above tabs to view related content.