LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BIFURCATION PROPERTIES FOR A CLASS OF CHOQUARD EQUATION IN WHOLE ℝ3

Photo from wikipedia

Abstract This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations: (P) $$\left\{ {\begin{array}{*{20}{l}} { - \Delta u = \lambda f(x)\left[ {u + \left(… Click to show full abstract

Abstract This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations: (P) $$\left\{ {\begin{array}{*{20}{l}} { - \Delta u = \lambda f(x)\left[ {u + \left( {{I_\alpha }*f( \cdot )H(u)} \right)h(u)} \right],{\rm{ in }} \ {{\mathbb{R}}^3},}\\ {{{\lim }_{|x| \to \infty }}u(x) = 0,\quad u(x) > 0,\quad x \in {{\mathbb{R}}^3},\quad u \in {D^{1,2}}({{\mathbb{R}}^3}),} \end{array}} \right.$$ where ${I_\alpha }(x) = 1/|x{|^\alpha },\,\alpha \in (0,3),\,\lambda > 0,\,f:{{\mathbb{R}}^3} \to {\mathbb{R}}$ is a positive continuous function and h : ${\mathbb{R}} \to {\mathbb{R}}$ is a bounded Hölder continuous function. The main tools used are Leray–Schauder degree theory and a global bifurcation result due to Rabinowitz.

Keywords: mathbb; bifurcation; class choquard; bifurcation properties

Journal Title: Glasgow Mathematical Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.