LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FRACTIONAL SCHRÖDINGER–POISSON SYSTEM WITH SINGULARITY: EXISTENCE, UNIQUENESS, AND ASYMPTOTIC BEHAVIOR

Photo by mael_balland from unsplash

Abstract In this paper, we consider the following fractional Schrödinger–Poisson system with singularity \begin{equation*} \left \{\begin{array}{lcl} ({-}\Delta)^s u+V(x)u+\lambda \phi u = f(x)u^{-\gamma}, &&\quad x\in\mathbb{R}^3,\\ ({-}\Delta)^t \phi = u^2, &&\quad x\in\mathbb{R}^3,\\… Click to show full abstract

Abstract In this paper, we consider the following fractional Schrödinger–Poisson system with singularity \begin{equation*} \left \{\begin{array}{lcl} ({-}\Delta)^s u+V(x)u+\lambda \phi u = f(x)u^{-\gamma}, &&\quad x\in\mathbb{R}^3,\\ ({-}\Delta)^t \phi = u^2, &&\quad x\in\mathbb{R}^3,\\ u>0,&&\quad x\in\mathbb{R}^3, \end{array}\right. \end{equation*} where 0 < γ < 1, λ > 0 and 0 < s ≤ t < 1 with 4s + 2t > 3. Under certain assumptions on V and f, we show the existence, uniqueness, and monotonicity of positive solution uλ using the variational method. We also give a convergence property of uλ as λ → 0, when λ is regarded as a positive parameter.

Keywords: schr dinger; dinger poisson; poisson system; system singularity; existence uniqueness; fractional schr

Journal Title: Glasgow Mathematical Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.