LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass and internal-energy transports in strongly compressible magnetohydrodynamic turbulence

Turbulent mass and internal-energy transports in strongly compressible magnetohydrodynamic (MHD) turbulence are investigated in the framework of the multiple-scale direct-interaction approximation, an analytical closure scheme for inhomogeneous turbulence at very… Click to show full abstract

Turbulent mass and internal-energy transports in strongly compressible magnetohydrodynamic (MHD) turbulence are investigated in the framework of the multiple-scale direct-interaction approximation, an analytical closure scheme for inhomogeneous turbulence at very high Reynolds numbers. Utilising the analytical representations for the turbulent mass and internal-energy fluxes and their transport coefficients, which are expressed in terms of the correlation and response functions, turbulence models for these fluxes are proposed. In addition to the usual gradient-diffusion transports, cross-diffusion transports mediated by the density variance and the transports along the mean magnetic field mediated by the compressional or dilatational turbulent cross-helicity (velocity–magnetic-field correlation coupled with compressive motions) are shown to arise. These compressibility effects are of fundamental importance since they provide deviations from the usual gradient-diffusion transports. Analogies of the dilatational cross-helicity effects to the magnetoacoustic waves are also argued.

Keywords: energy transports; mass internal; transports strongly; internal energy; turbulence

Journal Title: Journal of Plasma Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.