LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particle trajectories in Weibel filaments: influence of external field obliquity and chaos

Photo from wikipedia

When two collisionless plasma shells collide, they interpenetrate and the overlapping region may turn Weibel unstable for some values of the collision parameters. This instability grows magnetic filaments which, at… Click to show full abstract

When two collisionless plasma shells collide, they interpenetrate and the overlapping region may turn Weibel unstable for some values of the collision parameters. This instability grows magnetic filaments which, at saturation, have to block the incoming flow if a Weibel shock is to form. In a recent paper (Bret, J. Plasma Phys., vol. 82, 2016b, 905820403), it was found by implementing a toy model for the incoming particle trajectories in the filaments, that a strong enough external magnetic field $\unicode[STIX]{x1D63D}_{0}$ can prevent the filaments blocking the flow if it is aligned with them. Denoting by $B_{f}$ the peak value of the field in the magnetic filaments, all test particles stream through them if $\unicode[STIX]{x1D6FC}=B_{0}/B_{f}>1/2$. Here, this result is extended to the case of an oblique external field $B_{0}$ making an angle $\unicode[STIX]{x1D703}$ with the flow. The result, numerically found, is simply $\unicode[STIX]{x1D6FC}>\unicode[STIX]{x1D705}(\unicode[STIX]{x1D703})/\cos \unicode[STIX]{x1D703}$, where $\unicode[STIX]{x1D705}(\unicode[STIX]{x1D703})$ is of order unity. Noteworthily, test particles exhibit chaotic trajectories.

Keywords: external field; unicode stix; stix; particle trajectories

Journal Title: Journal of Plasma Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.