We read with interest the article by Brose and colleagues describing the findings of a systematic review and meta-analysis, entitled: ‘Maintaining abstinence from smoking after a period of enforced abstinence… Click to show full abstract
We read with interest the article by Brose and colleagues describing the findings of a systematic review and meta-analysis, entitled: ‘Maintaining abstinence from smoking after a period of enforced abstinence – systematic review, meta-analysis and analysis of behaviour change techniques with a focus on mental health’ (Brose et al., 2018). This article endeavoured to review interventions to maintain smoking abstinence post-discharge from smoke-free institutions, with a focus on people with mental health problems. The review included studies of smokers in smoke-free prisons, inpatient mental health units and substance use treatment centres. Despite typically high rates of relapse following discharge from such facilities, the authors encouragingly conclude pharmacotherapy and/or behavioural support can help to maintain abstinence, compared with standard care (relative risk of verified point-prevalence smoking abstinence at longest follow up = 2.06, 95% confidence interval 1.30–3.27). As a secondary outcome, the authors reported most of the studies that measured cigarette consumption among those that relapsed found a decrease in consumption following discharge, compared with preadmission levels. There are two points relating to this review that we believe warrant further discussion. Firstly, the assumption that participants in the included studies were indeed ‘smoke-free’ during admission or incarceration, and secondly, the significance of the finding of reduced cigarette consumption post-discharge. The majority of studies included in this review acted on the premise that participants remained abstinent from smoking while in the prescribed smoke-free facilities. Two studies recorded contraband smoking while on the unit – one using technician assessment (Gariti et al., 2002) and the other using self-report (Joseph, 1993), although neither mentioned whether biochemical verification occurred. Stuyt (2015) reported that random breath carbon monoxide testing was utilised in the treatment facility studied, however rates of compliance with the ban were not reported. This is important, as there is evidence to suggest many people do not adhere to smoking bans. Stockings et al. (2015) reported 83.5% of patients in an inpatient psychiatric facility in Australia were non-compliant with a total smoking ban. Another study found over three-quarters of smokers in a United States prison continued to smoke despite a smoke-free policy (Cropsey and Kristeller, 2005). High rates of non-adherence are not altogether surprising, considering the modest provision of cessation support documented in smoke-free facilities. Stockings et al. (2015) found only 20% of inpatient smokers received optimal nicotine replacement therapy. Additionally, a survey conducted in two large smoke-free hospitals in Australia found 40% of staff offered nicotine replacement therapy ‘never’ or ‘rarely’ to patients (McCrabb et al., 2017). High levels of non-compliance with smoking bans could introduce problems with measuring the effects of interventions designed at maintaining abstinence beyond release. Discouragingly high apparent relapse rates may underestimate the potential effectiveness of interventions in improving abstinence, if people are in fact continuing to smoke while in smoke-free facilities. The modest effect reported by Brose et al. (2018) of interventions in maintaining abstinence should be interpreted with this in mind. Furthermore, future research in this area should consider incorporating verified measurements of smoking during time in smoke-free facilities. This will enable more accurate assessment of interventions aimed at achieving cessation beyond discharge. In the review by Brose and coworkers, all but one (Jonas and Eagle, 1991) of the studies that measured change in cigarette consumption reported reduced consumption following discharge (Joseph, 1993; Gariti et al., 2002; Strong et al., 2012; Stockings et al., 2014). This is common to findings from other studies examining smoking habits after periods of enforced abstinence (Azevedo et al., 2010; Puljevic et al., 2018), and warrants further discussion for three main reasons. Firstly, the role of compensation should be considered. It is known that, when faced with a situation of reduced nicotine, smokers compensate by increasing smoking behaviour (Hughes and Carpenter, 2005; Scherer and Lee, 2014). In this way, total nicotine and smoke exposure levels
               
Click one of the above tabs to view related content.