BACKGROUND Antisociality across adolescence and young adulthood puts individuals at high risk of developing a variety of problems. Prior research has linked antisociality to autonomic nervous system and endocrinological functioning.… Click to show full abstract
BACKGROUND Antisociality across adolescence and young adulthood puts individuals at high risk of developing a variety of problems. Prior research has linked antisociality to autonomic nervous system and endocrinological functioning. However, there is large heterogeneity in antisocial behaviors, and these neurobiological measures are rarely studied conjointly, limited to small specific studies with narrow age ranges, and yield mixed findings due to the type of behavior examined. METHODS We harmonized data from 1489 participants (9-27 years, 67% male), from six heterogeneous samples. In the resulting dataset, we tested relations between distinct dimensions of antisociality and heart rate, pre-ejection period (PEP), respiratory sinus arrhythmia, respiration rate, skin conductance levels, testosterone, basal cortisol, and the cortisol awakening response (CAR), and test the role of age throughout adolescence and young adulthood. RESULTS Three dimensions of antisociality were uncovered: 'callous-unemotional (CU)/manipulative traits', 'intentional aggression/conduct', and 'reactivity/impulsivity/irritability'. Shorter PEPs and higher testosterone were related to CU/manipulative traits, and a higher CAR is related to both CU/manipulative traits and intentional aggression/conduct. These effects were stable across age. CONCLUSIONS Across a heterogeneous sample and consistent across development, the CAR may be a valuable measure to link to CU/manipulative traits and intentional aggression, while sympathetic arousal and testosterone are additionally valuable to understand CU/manipulative traits. Together, these findings deepen our understanding of the fundamental mechanisms underlying different components of antisociality. Finally, we illustrate the potential of using current statistical techniques for combining multiple datasets to draw robust conclusions about biobehavioral associations.
               
Click one of the above tabs to view related content.