LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverse kinematics of redundant manipulators with guaranteed performance

Photo by jordanmcdonald from unsplash

Abstract In this paper, the inverse kinematics (IK) of redundant manipulators is presented and studied, where the performance of end-effector path planning is guaranteed. A new Jacobian pseudoinverse (JP)-based IK… Click to show full abstract

Abstract In this paper, the inverse kinematics (IK) of redundant manipulators is presented and studied, where the performance of end-effector path planning is guaranteed. A new Jacobian pseudoinverse (JP)-based IK method is proposed and studied using a typical numerical difference rule to discretize the existing IK method based on JP. The proposed method is depicted in a discrete-time form and is theoretically proven to exhibit great performance in the IK of redundant manipulators. A discrete-time repetitive path planning (DTRPP) scheme and a discrete-time obstacle avoidance (DTOA) scheme are developed for redundant manipulators using the proposed method. Comparative simulations are conducted on a universal robot manipulator and a PA10 robot manipulator to validate the effectiveness and superior performance of the DTRPP scheme, the DTOA scheme, and the proposed JP-based IK method.

Keywords: performance; redundant manipulators; kinematics redundant; inverse kinematics; kinematics

Journal Title: Robotica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.