Robot positioning performance is studied in the scope of a robotized X-ray computed tomography application on a ABB IRB4600 robot. The robot has the “absolute accuracy” option, that is, the… Click to show full abstract
Robot positioning performance is studied in the scope of a robotized X-ray computed tomography application on a ABB IRB4600 robot. The robot has the “absolute accuracy” option, that is, the manufacturer has identified the manufacturing defects and included them in the robot control. Laser-tracker measurement on a 6.5-h long linear trajectory shows thermal drift and backlash issues, affecting the positioning unidirectional repeatability and bidirectional accuracy. A thermo-geometrical model with backlash compensation is developed. Geometrical calibration improves the forwards unidirectional mean accuracy from 1.39 to 0.06 mm between theoretical and optimized geometrical parameters with a stable thermal state. Thermo-geometrical calibration reduces the positioning scattering from a maximum of 0.15 to 0.05 mm (close to the repeatability of the robot). Backlash compensation improves the bidirectional mean accuracy from 1.53 to 0.07 mm.
               
Click one of the above tabs to view related content.