LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymptotic Regulation of Dynamically Positioned Vessels with Unknown Dynamics and External Disturbances

Photo from wikipedia

A robust adaptive nonlinear asymptotic regulating control law is designed for dynamically positioned vessels exposed to unknown time-varying external disturbances incorporating Fuzzy Logic Systems (FLSs), projection operators, and the “robustifying”… Click to show full abstract

A robust adaptive nonlinear asymptotic regulating control law is designed for dynamically positioned vessels exposed to unknown time-varying external disturbances incorporating Fuzzy Logic Systems (FLSs), projection operators, and the “robustifying” term into the vectorial backstepping technique. The FLSs approximate the vessel unknown dynamics and the update laws based on the online projection operators update the fuzzy weight vectors. The robustifying term handles the external disturbances and the fuzzy approximation errors. The designed Dynamic Positioning (DP) control law achieves asymptotic regulation of the vessel's position and heading and makes the other signals in the DP closed-loop control system of vessels be uniformly ultimately bounded. Simulations based on the Marine System Simulator toolbox validate the designed DP control law.

Keywords: dynamically positioned; control; external disturbances; asymptotic regulation; unknown dynamics; positioned vessels

Journal Title: Journal of Navigation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.