LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GPS-BDS-Galileo double-differenced stochastic model refinement based on least-squares variance component estimation

Photo by p_kuzovkova from unsplash

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key… Click to show full abstract

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.

Keywords: least squares; squares variance; based least; stochastic models; model; stochastic model

Journal Title: Journal of Navigation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.