LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust train localisation method based on advanced map matching measurement-augmented tightly-coupled GNSS/INS with error-state UKF

Photo from wikipedia

This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation… Click to show full abstract

This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.

Keywords: state; gnss ins; measurement augmented; error state; measurement

Journal Title: Journal of Navigation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.