LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ca6.5Pb1.5ZnBi(VO4)7, a novel whitlockite-type vanadate: crystal structure refinement and properties characterization

Photo by mybbor from unsplash

Novel compounds Ca8−x Pb x ZnBi(VO4)7 (0 ≤ x ≤ 1.5) solid solution with the whitlockite-type structure were synthesized by a standard solid-state method. The unit-cell parameters were determined by… Click to show full abstract

Novel compounds Ca8−x Pb x ZnBi(VO4)7 (0 ≤ x ≤ 1.5) solid solution with the whitlockite-type structure were synthesized by a standard solid-state method. The unit-cell parameters were determined by X-ray powder diffraction and using Le Bail decomposition. The crystal structural of Ca6.5Pb1.5ZnBi(VO4)7 was refined by Rietveld method. It is found that Pb2+ cations occupy a half of the M3 site, whereas the M1 and M2 sites are predominantly occupied by calcium with admixture of Bi3+ cations. The M5 site is fully occupied by Zn2+ cations. The M4 site in the structure of studied sample remains vacant and does not participate in the cations arrangement. Optical second harmonic generation demonstrates high non-linear optical activity. Dielectric investigations confirm polar space group R3c. Changes in the non-linear optical and ferroelectric parameters are matched with lead and zinc cation distribution over the sites of the whitlockite-type structure.

Keywords: structure; 5pb1 5znbi; ca6 5pb1; whitlockite type; vo4

Journal Title: Powder Diffraction
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.