LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ High-Temperature EBSD and 3D Phase Field Studies of the Austenite–Ferrite Transformation in a Medium Mn Steel

Photo by glenncarstenspeters from unsplash

Abstract In this research, in situ high-temperature electron backscattered diffraction (EBSD) mapping is applied to record and analyze the migration of the α/γ interfaces during cyclic austenite–ferrite phase transformations in… Click to show full abstract

Abstract In this research, in situ high-temperature electron backscattered diffraction (EBSD) mapping is applied to record and analyze the migration of the α/γ interfaces during cyclic austenite–ferrite phase transformations in a medium manganese steel. The experimental study is supplemented with related 3D phase field (PF) simulations to better understand the 2D EBSD observations in the context of the 3D transformation events taking place below the surface. The in situ EBSD observations and PF simulations show an overall transformation behavior qualitatively similar to that measured in dilatometry. The behavior and kinetics of individual austenite–ferrite interfaces during the transformation is found to have a wide scatter around the average interface behavior deduced on the basis of the dilatometric measurements. The trajectories of selected characteristic interfaces are analyzed in detail and yield insight into the effect of local conditions in the vicinity of interfaces on their motion, as well as the misguiding effects of 2D observations of processes taking place in 3D.

Keywords: situ high; austenite ferrite; phase field; high temperature; transformation

Journal Title: Microscopy and Microanalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.