Abstract We have studied Bi2Se3 at its 2D-limit using scanning tunneling spectroscopy (STS). Bulk Bi2Se3 is a well-known topological insulator having gapless surface states. In the 2D limit, the interior… Click to show full abstract
Abstract We have studied Bi2Se3 at its 2D-limit using scanning tunneling spectroscopy (STS). Bulk Bi2Se3 is a well-known topological insulator having gapless surface states. In the 2D limit, the interior of the material exhibits a band gap, whereas the periphery shows a gapless metallic state having a Dirac point. We demonstrate a method to tune the Fermi energy and hence the Dirac point of Bi2Se3 nanoplates through doping at the anionic site. For this purpose, STS measurements were carried out on the Bi2Se3 system. We have used bromide as a dopant, which turns the material to n-type in nature. As a result, STS studies infer that the Fermi energy (EF) shifted toward the conduction band and consequently the Dirac point could be found to move away from Fermi energy. Through STS measurements, we have demonstrated a correlation between the shift of Dirac point position and the dopant content. The size, shape, and compositions of Bi2Se3 nanoflakes and concentration of bromine in the doped nanostructures were determined using transmission electron microscopy, associated energy dispersive X-ray spectroscopy analysis, and X-ray diffraction.
               
Click one of the above tabs to view related content.