LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Processing APT Spectral Backgrounds for Improved Quantification

Photo by joda66 from unsplash

Abstract We describe a method to estimate background noise in atom probe tomography (APT) mass spectra and to use this information to enhance both background correction and quantification. Our approach… Click to show full abstract

Abstract We describe a method to estimate background noise in atom probe tomography (APT) mass spectra and to use this information to enhance both background correction and quantification. Our approach is mathematically general in form for any detector exhibiting Poisson noise with a fixed data acquisition time window, at voltages varying through the experiment. We show that this accurately estimates the background observed in real experiments. The method requires, as a minimum, the z-coordinate and mass-to-charge-state data as input and can be applied retrospectively. Further improvements are obtained with additional information such as acquisition voltage. Using this method allows for improved estimation of variance in the background, and more robust quantification, with quantified count limits at parts-per-million concentrations. To demonstrate applications, we show a simple peak detection implementation, which quantitatively suppresses false positives arising from random noise sources. We additionally quantify the detectability of 121-Sb in a standardized-doped Si microtip as (1.5 × 10−5, 3.8 × 10−5) atomic fraction, α = 0.95. This technique is applicable to all modes of APT data acquisition and is highly general in nature, ultimately allowing for improvements in analyzing low ionic count species in datasets.

Keywords: processing apt; improved quantification; apt spectral; spectral backgrounds; quantification; backgrounds improved

Journal Title: Microscopy and Microanalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.