LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EDS Microanalysis of Unhydrated Blast Furnace Slag Grains in Field Concrete with Different Service Life

Photo from wikipedia

Abstract Because the essential quality metrics of blast furnace slag are based on its oxide composition, the determination of chemical compositions of unhydrated slag grains in an aged concrete could… Click to show full abstract

Abstract Because the essential quality metrics of blast furnace slag are based on its oxide composition, the determination of chemical compositions of unhydrated slag grains in an aged concrete could be useful for understanding its past performance and in predicting the remaining service life of existing slag-bearing concrete. In this research, the authors explored the feasibility of using standard-based energy-dispersive X-ray spectroscopy (EDS) microanalysis, in tandem with electron imaging, as a tool for quantitative measurement of the chemical composition of blast furnace slag grains in cement/concrete. In the experimental study, seven concrete samples representing various service life durations were collected in the Netherlands. The microanalysis results of the samples revealed that the change in slag chemistry is insignificant for samples B (1985) to F (2006); however, elevated CaO and SiO2 contents are found in slag used for sample G (2015), opposite to that of Al2O3 and MgO. After discussing compositional characterization, the paper discusses favorable microanalysis protocols for acceptable elemental quantification accuracy. It was concluded that quantitative EDS microanalysis is a strong tool to characterize the chemical composition of unhydrated slag used in field concrete, which could potentially contribute to understanding the correlations between composition and long-term performance in slag concrete structures.

Keywords: blast furnace; furnace slag; slag grains; microanalysis; slag; service life

Journal Title: Microscopy and Microanalysis
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.