Author(s): Copos, CA; Guy, RD | Abstract: © 2018 Australian Mathematical SocietyÂ. The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures… Click to show full abstract
Author(s): Copos, CA; Guy, RD | Abstract: © 2018 Australian Mathematical SocietyÂ. The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In this work, we consider a poroelastic immersed boundary method in which a fluid permeates a porous, elastic structure of negligible volume fraction, and extend this method to include stress relaxation of the material. The porous viscoelastic method presented here is validated for a prescribed oscillatory shear and for an expansion driven by the motion at the boundary of a circular material by comparing numerical solutions to an analytical solution of the Maxwell model for viscoelasticity. Finally, an application of the modelling framework to cell biology is provided: passage of a cell through a microfluidic channel. We demonstrate that the rheology of the cell cytoplasm is important for capturing the transit time through a narrow channel in the presence of a pressure drop in the extracellular fluid.
               
Click one of the above tabs to view related content.