LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterizing Boundedness in Chase Variants

Photo from wikipedia

Abstract Existential rules are a positive fragment of first-order logic that generalizes function-free Horn rules by allowing existentially quantified variables in rule heads. This family of languages has recently attracted… Click to show full abstract

Abstract Existential rules are a positive fragment of first-order logic that generalizes function-free Horn rules by allowing existentially quantified variables in rule heads. This family of languages has recently attracted significant interest in the context of ontology-mediated query answering. Forward chaining, also known as the chase, is a fundamental tool for computing universal models of knowledge bases, which consist of existential rules and facts. Several chase variants have been defined, which differ on the way they handle redundancies. A set of existential rules is bounded if it ensures the existence of a bound on the depth of the chase, independently from any set of facts. Deciding if a set of rules is bounded is an undecidable problem for all chase variants. Nevertheless, when computing universal models, knowing that a set of rules is bounded for some chase variant does not help much in practice if the bound remains unknown or even very large. Hence, we investigate the decidability of the k-boundedness problem, which asks whether the depth of the chase for a given set of rules is bounded by an integer k. We identify a general property which, when satisfied by a chase variant, leads to the decidability of k-boundedness. We then show that the main chase variants satisfy this property, namely the oblivious, semi-oblivious (aka Skolem), and restricted chase, as well as their breadth-first versions.

Keywords: chase; chase variants; rules bounded; characterizing boundedness; set rules; existential rules

Journal Title: Theory and Practice of Logic Programming
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.