LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RANDOM SPARSE SAMPLING IN A GIBBS WEIGHTED TREE AND PHASE TRANSITIONS

Photo by djtearsplk from unsplash

Let $\unicode[STIX]{x1D707}$ be the projection on $[0,1]$ of a Gibbs measure on $\unicode[STIX]{x1D6F4}=\{0,1\}^{\mathbb{N}}$ (or more generally a Gibbs capacity) associated with a Hölder potential. The thermodynamic and multifractal properties of… Click to show full abstract

Let $\unicode[STIX]{x1D707}$ be the projection on $[0,1]$ of a Gibbs measure on $\unicode[STIX]{x1D6F4}=\{0,1\}^{\mathbb{N}}$ (or more generally a Gibbs capacity) associated with a Hölder potential. The thermodynamic and multifractal properties of $\unicode[STIX]{x1D707}$ are well known to be linked via the multifractal formalism. We study the impact of a random sampling procedure on this structure. More precisely, let $\{{I_{w}\}}_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ stand for the collection of dyadic subintervals of $[0,1]$ naturally indexed by the finite dyadic words. Fix $\unicode[STIX]{x1D702}\in (0,1)$ , and a sequence $(p_{w})_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ of independent Bernoulli variables of parameters $2^{-|w|(1-\unicode[STIX]{x1D702})}$ . We consider the (very sparse) remaining values $\widetilde{\unicode[STIX]{x1D707}}=\{\unicode[STIX]{x1D707}(I_{w}):w\in \unicode[STIX]{x1D6F4}^{\ast },p_{w}=1\}$ . We study the geometric and statistical information associated with $\widetilde{\unicode[STIX]{x1D707}}$ , and the relation between $\widetilde{\unicode[STIX]{x1D707}}$ and $\unicode[STIX]{x1D707}$ . To do so, we construct a random capacity $\mathsf{M}_{\unicode[STIX]{x1D707}}$ from $\widetilde{\unicode[STIX]{x1D707}}$ . This new object fulfills the multifractal formalism, and its free energy is closely related to that of $\unicode[STIX]{x1D707}$ . Moreover, the free energy of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ generically exhibits one first order and one second order phase transition, while that of $\unicode[STIX]{x1D707}$ is analytic. The geometry of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ is deeply related to the combination of approximation by dyadic numbers with geometric properties of Gibbs measures. The possibility to reconstruct $\unicode[STIX]{x1D707}$ from $\widetilde{\unicode[STIX]{x1D707}}$ by using the almost multiplicativity of $\unicode[STIX]{x1D707}$ and concatenation of words is discussed as well.

Keywords: stix; unicode stix; widetilde unicode; stix x1d707

Journal Title: Journal of the Institute of Mathematics of Jussieu
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.