We extend T. Y. Thomas’s approach to projective structures, over the complex analytic category, by involving the $\unicode[STIX]{x1D70C}$-connections. This way, a better control of projective flatness is obtained and, consequently,… Click to show full abstract
We extend T. Y. Thomas’s approach to projective structures, over the complex analytic category, by involving the $\unicode[STIX]{x1D70C}$-connections. This way, a better control of projective flatness is obtained and, consequently, we have, for example, the following application: if the twistor space of a quaternionic manifold $P$ is endowed with a complex projective structure then $P$ can be locally identified, through quaternionic diffeomorphisms, with the quaternionic projective space.
               
Click one of the above tabs to view related content.