LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wideband split-ring antenna arrays based on substrate integrated waveguide for Ka-band applications

Photo from wikipedia

Abstract This paper presents wideband split-ring antenna arrays based on substrate integrated waveguide (SIW) for Ka-band (26.5–40 GHz) applications. The antenna array is fed by a 2.92 mm coaxial connector… Click to show full abstract

Abstract This paper presents wideband split-ring antenna arrays based on substrate integrated waveguide (SIW) for Ka-band (26.5–40 GHz) applications. The antenna array is fed by a 2.92 mm coaxial connector (K-connector) and the power is equally distributed to each split-ring resonator. The designed coplanar waveguide (CPW), SIW, CPW-to-SIW transition, coaxial-to-CPW transition, and two-stage SIW power divider are described in detail. By using a thin Rogers 6002 substrate with silver epoxy-filled vias, a transition prototype is designed, fabricated, and tested in a back-to-back configuration. A wideband split-ring resonator is developed as a single element and four possible arrangements of antenna arrays are introduced. By combining the designed components and routing paths, two full layouts of the antenna arrays with four split-ring resonators are addressed. As a demonstrator, a 2×2 antenna array prototype in a compact format is designed, fabricated, and tested. The fabricated antenna array achieves a measured directivity of 15.0 dBi with a fractional bandwidth of 23.0% centered at 30.5 GHz.

Keywords: split ring; wideband split; antenna arrays; substrate

Journal Title: International Journal of Microwave and Wireless Technologies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.