Abstract Fetal and child development are shaped by early life exposures, including maternal health states, nutrition and educational and home environments. We aimed to determine if suboptimal pre-pregnancy maternal body… Click to show full abstract
Abstract Fetal and child development are shaped by early life exposures, including maternal health states, nutrition and educational and home environments. We aimed to determine if suboptimal pre-pregnancy maternal body mass index (BMI; underweight, overweight, obese) would associate with poorer cognitive outcomes in children, and whether early life nutritional, educational and home environments modify these relationships. Self-reported data were obtained from mother-infant dyads from the pan-Canadian prospective Maternal-Infant Research on Environmental Chemicals cohort. Relationships between potential risk factors (pre-pregnancy maternal BMI, breastfeeding practices and Home Observation Measurement of the Environment [HOME] score) and child cognitive development at age three (Weschler’s Preschool and Primary Scale of Intelligence, Third Edition scale and its subcategories) were each evaluated using analysis of variance, multivariable regression models and moderating analyses. Amongst the 528 mother−child dyads, increasing maternal pre-pregnancy BMI was negatively associated with scores for child full-scale IQ (β [95% CI]; −2.01 [−3.43, −0.59], p = 0.006), verbal composite (−1.93 [−3.33, −0.53], p = 0.007), and information scale (−0.41 [−0.70, −0.14], p = 0.003) scores. Higher maternal education level or HOME score attenuated the negative association between maternal pre-pregnancy BMI and child cognitive outcome by 30%–41% and 7%–22%, respectively, and accounted for approximately 5%–10% greater variation in male children’s cognitive scores compared to females. Maternal education and higher quality home environment buffer the negative effect of elevated maternal pre-pregnancy BMI on child cognitive outcomes. Findings suggest that relationships between maternal, social and environmental factors must be considered to reveal pathways that shape risk for, and resiliency against, suboptimal cognitive outcomes in early life.
               
Click one of the above tabs to view related content.