LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Confirmation of S-metolachlor resistance in Palmer amaranth (Amaranthus palmeri)

Photo from wikipedia

Abstract S-Metolachlor is commonly used by soybean and cotton growers, especially with POST treatments for overlapping residuals, to obtain season-long control of glyphosate- and acetolactate synthase (ALS)–resistant Palmer amaranth. In… Click to show full abstract

Abstract S-Metolachlor is commonly used by soybean and cotton growers, especially with POST treatments for overlapping residuals, to obtain season-long control of glyphosate- and acetolactate synthase (ALS)–resistant Palmer amaranth. In Crittenden County, AR, reports of Palmer amaranth escapes following S-metolachlor treatment were first noted at field sites near Crawfordsville and Marion in 2016. Field and greenhouse experiments were conducted to confirm S-metolachlor resistance and to test for cross-resistance to other very-long-chain fatty acid (VLCFA)–inhibiting herbicides in Palmer amaranth accessions from Crawfordsville and Marion. Palmer amaranth control in the field (soil <3% organic matter) 14 d after treatment (DAT) was ≥94% with a 1× rate of acetochlor (1,472 g ai ha–1; emulsifiable concentrate formulation) and dimethenamid-P (631 g ai ha–1). However, S-metolachlor at 1,064 g ai ha–1 provided only 76% control, which was not significantly different from the 1/2× and 1/4× rates of dimethenamid-P and acetochlor (66% to 85%). In the greenhouse, Palmer amaranth accessions from Marion and Crawfordsville were 9.8 and 8.3 times more resistant to S-metolachlor compared with two susceptible accessions based on LD50 values obtained from dose–response experiments. Two-thirds and 1.5 times S-metolachlor at 1,064 g ha–1 were the estimated rates required to obtain 90% mortality of the Crawfordsville and Marion accessions, respectively. Data collected from the field and greenhouse confirm that these accessions have evolved a low level of resistance to S-metolachlor. In an agar-based assay, the level of resistance in the Marion accession was significantly reduced in the presence of a glutathione S-transferase (GST) inhibitor, suggesting that GSTs are the probable resistance mechanism. With respect to other VLCFA-inhibiting herbicides, Marion and Crawfordsville accessions were not cross-resistant to acetochlor, dimethenamid-P, or pyroxasulfone. However, both accessions, based on LD50 values obtained from greenhouse dose–response experiments, exhibited reduced sensitivity (1.5- to 3.6-fold) to the tested VLCFA-inhibiting herbicides. Nomenclature: Acetochlor; dimethenamid-P; S-metolachlor; pyroxasulfone; Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; cotton, Gossypium hirsutum L.; soybean, Glycine max (L.) Merr.

Keywords: metolachlor resistance; marion; palmer amaranth; metolachlor

Journal Title: Weed Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.