LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atroposelective Synthesis of C-C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis.

Photo from wikipedia

ConspectusAxially chiral compounds with rotationally constrained σ-bonds that exhibit atropisomerism are lucrative synthetic targets because of their ubiquity in functional materials and natural products. The metal complex-catalyzed enantioselective fabrication of… Click to show full abstract

ConspectusAxially chiral compounds with rotationally constrained σ-bonds that exhibit atropisomerism are lucrative synthetic targets because of their ubiquity in functional materials and natural products. The metal complex-catalyzed enantioselective fabrication of axially chiral scaffolds has been widely investigated, and thus far, considerable progress has been made. Over the past two decades, we have developed a highly efficient strategy for constructing axially chiral biarenol derivatives using chiral mono- and dinuclear vanadium complexes. These complexes are readily prepared from vanadium(IV) salts and Schiff base ligands (generated from the condensation of (S)-tert-leucine and di- or monoformyl-(R)-1,1'-bi-2-naphthol (BINOL) derivatives) under O2 and act as highly active catalysts for highly stereoselective C-C bond formation. In particular, the vanadium complex-catalyzed enantioselective oxidative coupling of 2-naphthols 1 under oxygen or in air, which is a green oxidant, affords the desired axially chiral molecules in high yields and high stereoselectivity (up to quantitative yield and 97% ee), along with water as the sole coproduct. This coupling reaction tolerated various functional groups (such as halogens, alkoxys, and boryls) and avoided overoxidation of coupling products.The key feature of dinuclear vanadium(V) catalysts such as (Ra,S,S)-5a is an outstanding mode of the homocoupling reaction, in which a single molecule of the catalyst activates two molecules of the starting material (e.g., 2-naphthols) simultaneously. With this "dual activation" mechanism, the oxidative coupling promoted by the dinuclear catalyst proceeds in an intramolecular manner. The homocoupling rate using 5 mol % of the dinuclear vanadium(V) complex (Ra,S,S)-5a was measured to be 111 times faster than that of the mononuclear vanadium(IV) complex (S)-4a bearing a half motif of the dinuclear vanadium complex.In the case of the heterocoupling reaction utilizing two different kinds of arenol derivatives, only a starting arenol having lower oxidation potential seems to be activated by the mononuclear vanadium complex. The reaction rate of the heterocoupling using either mono- or dinuclear vanadium complexes showed no difference to give the coupling product in high yields but with a different enantioselective manner; chiral mononuclear vanadium(V) complexes showed better enantioselectivites than that of the dinuclear vanadium(V) complexes. A competing heterocoupling study and a linear correlation between the ee of the mononucaler vanadium catalyst and ee of the heterocoupling suggested that the heterocoupling involves an intermolecular radical-anion coupling pathway.In this Account, we summarize the recent advances in vanadium-catalyzed coupling reactions that produced important chiral molecules, such as biresorcinols, polycyclic biphenols, oxa[9]helicenes, bihydroxycarbazoles, and C1-symmetrical biarenols, and their coupling reaction mechanisms. By pursuing vanadium catalysis, we believe numerous additional transformations as well as a renewed interest in catalytic and chemo-, regio-, and enantioselective aryl-aryl bond constructions will be manifested.

Keywords: vanadium; dinuclear vanadium; reaction; mono dinuclear; axially chiral; vanadium complex

Journal Title: Accounts of chemical research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.