LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Assembly of Rotary and Linear Motor Proteins.

Photo from wikipedia

Molecular machines are an important and emerging frontier in research encompassing interdisciplinary subjects of chemistry, physics, biology, and nanotechnology. Although there has been major interest in creating synthetic molecular machines,… Click to show full abstract

Molecular machines are an important and emerging frontier in research encompassing interdisciplinary subjects of chemistry, physics, biology, and nanotechnology. Although there has been major interest in creating synthetic molecular machines, research on natural molecular machines is also crucial. Biomolecular motors are natural molecular machines existing in nearly every living systems. They play a vital role in almost every essential process ranging from intracellular transport to cell division, muscle contraction and the biosynthesis of ATP that fuels life processes. The construction of biomolecular motor-based biomimetic systems can help not only to deeply understand the mechanisms of motor proteins in the biological process but also to push forward the development of bionics and biomolecular motor-based devices or nanomachines. From combination of natural biomolecular motors with supramolecular chemistry, great opportunities could emerge toward the development of intelligent molecular machines and biodevices. In this Account, we describe our efforts to design and reconstitute biomolecular motor-based active biomimetic systems, in particular, the combination of motor proteins with layer-by-layer (LbL) assembled cellular structures. They are divided into two parts: (i) reconstitution of rotary molecular motor FOF1-ATPase, which is coated on the surface of LbL assembled microcapsules or multilayers and synthesizes adenosine triphosphate (ATP) through creating a proton gradient; (ii) molecular assembly of linear molecular motors, the kinesin-based active biomimetic systems, which are coated on a planar surface or LbL assembled tubular structure and drive the movement of microtubules. LbL assembled structures offer motor proteins with an environment that resembles the natural cell. This enables high activity and optimized function of the motor proteins. The assembled biomolecular motors can mimic their functionalities from the natural system. In addition, LbL assembly provides facile integration of functional components into motor protein-based active biomimetic systems and achieves the manipulation of FOF1-ATPase and kinesin. For FOF1-ATPase, the light-driven proton gradient and controlled ATP synthesis are highlighted. For kinesin, the strategies used for the direction and velocity control of kinesin-based molecular shuttles are discussed. We hope this research can inspire new ideas and propel the actual applications of biomolecular motor-based devices in the future.

Keywords: motor proteins; chemistry; biomolecular motor; molecular machines; motor; motor based

Journal Title: Accounts of chemical research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.