LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of Chemiluminescence Intensity of S2* in Non-premixed Hydrogen Microjet Flame in the Photometric Detector for Sulfur Detection.

Photo by joshuanewton from unsplash

A transparent quartz rod (q) placed vertically on top of a non-premixed hydrogen microjet flame in a flame photometric detector (qFPD) was developed and evaluated for sulfur detection. The microjet… Click to show full abstract

A transparent quartz rod (q) placed vertically on top of a non-premixed hydrogen microjet flame in a flame photometric detector (qFPD) was developed and evaluated for sulfur detection. The microjet flame burned around the quartz rod because of Coanda effect, forming an extended downstream flame zone with a relatively low temperature between 550 and 650 °C, which is favorable to the formation of S2*. The emission intensity of S2* and the signal-to-noise ratio (SNR) of sulfur response were enhanced 2.6- and 2.1-fold, respectively. It was found that the quartz rod of diameter 4 mm with a tip shape of semicircle placed 6 mm above the nozzle yielded the highest SNR. The limits of detection (LOD) for seven kinds of tested sulfur-containing compounds of qFPD were 0.3-0.5 pg S s-1, which is 5-7 times better than that of commercially available FPD detectors (LOD: 1.6-2.8 pg S s-1). The selectivity of sulfur over carbon was 105 on qFPD when the SNR for the mass flow rate of S and C atoms was ∼3 times. It was the first time that a quartz rod was used vertically on top of a microjet hydrogen-rich flame in FPD to enhance the chemiluminescence of S2* and improve the LOD down to 0.3-0.5 pg S s-1.

Keywords: detection; flame; hydrogen; microjet; microjet flame; quartz rod

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.