This work reports a plasmonic surface-enhanced Raman scattering (SERS) biosensor that allows for quantitative analysis of hematin in erythrocytes without the need of separating it from hemoglobin (Hb). The biosensor… Click to show full abstract
This work reports a plasmonic surface-enhanced Raman scattering (SERS) biosensor that allows for quantitative analysis of hematin in erythrocytes without the need of separating it from hemoglobin (Hb). The biosensor exploits the tunable localized surface plasmon resonance (LSPR) characteristics of multibranched gold nanoparticles (M-AuNPs) and the strong plasmon coupling between an Au thin film and a flexible substrate consisting of M-AuNPs embedded in polydimethylsiloxane (PDMS) (i.e., M-AuNP-embedded PDMS substrate). In the assay, the hematin (or hematin-containing erythrocyte hemolysate) was deposited on Au film surface and covered with M-AuNP-embedded PDMS. Strong SERS signals were generated under excitation at 785 nm; the signals were sensitive to hematin concentration but not to several common coexisting biological substances. The intensities of the SERS signal (at 1623 cm-1) displayed a wide linear range using hematin concentrations in a range of at least ∼1.5 nM-1.1 μM; the limit of detection (LOD) was ∼0.03 ± 0.01 nM at a signal/noise (S/N) of 3. This assay is simple and sensitive without tedious separation procedures, thereby saving time and enhancing efficiency. This biosensor can be used to determine hematin concentration in human erythrocyte cytosols giving concentrations of ∼18.5 ± 4.5 (by averaging eight samples) and 51.5 ± 6.2 μM (by averaging three samples) for healthy and sickle erythrocytes, respectively, making it a potential application in clinical detection.
               
Click one of the above tabs to view related content.