Mass spectrometry imaging (MSI) could provide vast amounts of data at the temporal-spatial scale in heterogeneous biological specimens, which challenges us to segment accurately suborgans/microregions from complex MSI data. Several… Click to show full abstract
Mass spectrometry imaging (MSI) could provide vast amounts of data at the temporal-spatial scale in heterogeneous biological specimens, which challenges us to segment accurately suborgans/microregions from complex MSI data. Several pipelines had been proposed for MSI spatial segmentation in the past decade. More importantly, data filtering was found to be an efficient procedure to improve the outcomes of MSI segmentation pipelines. It is not clear, however, how the filtering procedure affects the MSI segmentation. An improved pipeline was established by elaborating the filtering prioritization and filtering algorithm. Lipidomic-characteristic-based MSI data of a whole-body mouse fetus was used to evaluate the established pipeline on localization of the physiological position of suborgans by comparing with three commonly used pipelines and commercial SCiLS Lab software. Two structural measurements were used to quantify the performances of the pipelines including the percentage of abnormal edge pixel (PAEP) and CHAOS. Our results demonstrated that the established pipeline outperformed the other pipelines in visual inspection, spatial consistence, time-cost, and robustness analysis. For example, the dorsal pallium (isocortex) and hippocampal formation (Hpf) regions, midbrain, cerebellum, and brainstem on the mouse brain were annotated and located by the established pipeline. As a generic pipeline, the established pipeline could help with the accurate assessment and screening of drug/chemical-induced targeted organs and exploration of the progression and molecular mechanisms of diseases. The filter-based strategy is expected to become a critical component in the standard operating procedure of MSI data sets.
               
Click one of the above tabs to view related content.