LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ratiometric Cataluminescence Sensor of Amine Vapors for Discriminating Meat Spoilage.

Photo by jeztimms from unsplash

The freshness of meat has always been the focus of attention from consumers and suppliers for health and economic reasons. Usually, amine vapors, as one of the main components of… Click to show full abstract

The freshness of meat has always been the focus of attention from consumers and suppliers for health and economic reasons. Usually, amine vapors, as one of the main components of the gas produced in the process of meat spoilage, can be used to monitor meat spoilage. Here, a new ratiometric cataluminescence (CTL) sensor based on energy transfer was developed to identify amine vapors and monitor meat freshness. After Tb doping, amine vapors exhibit a dual-wavelength (490 and 555 nm) property of CTL signals when reacted on the surface of Tb-doped La2O2CO3, and the ratio of I555 to I490 (R555/490) is a unique value for a given analyte within a wide range of concentrations. To illustrate the new sensor, 15 amine vapors were successfully identified using R555/490, including homologues and isomers. Besides, this sensor was used to monitor four meats, and the freshness of meats can be distinguished by cluster analysis successfully. Moreover, further discussion of energy-transfer phenomena and influence factors has facilitating effects on exploring the mechanism of energy transfer at the gas-solid interface.

Keywords: meat spoilage; amine vapors; ratiometric cataluminescence; meat; sensor

Journal Title: Analytical chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.