The development of precise medicine requires diagnostic probes to simultaneously satisfy an excellent detection limit and a wide linear analysis range because of enormous individual-discrepancy of disease biomarker concentrations, yet… Click to show full abstract
The development of precise medicine requires diagnostic probes to simultaneously satisfy an excellent detection limit and a wide linear analysis range because of enormous individual-discrepancy of disease biomarker concentrations, yet it remains challenging. Herein, an upconverison nanoprobe with a luminescence ratio flexibly tailored was designed for ultrasensitive monitoring exhaled nitric oxide to indicate the clinical course of asthma. Two independent emissions from the same nanoprobe can be discretionarily modulated to vary their intensity ratios for adapting different analysis requirements. Delightfully, this novel nanoprobe demonstrated a 100-fold lower detection limit compared with the traditional ratiometric fluorescence manner and a more broad linear detection range from the subpart per billion (ppb) level to hundreds of ppb. This ratio-adjustable fluorescence detection strategy holds great potential for miscellaneous disease diagnosis applications.
               
Click one of the above tabs to view related content.